Abstract

In magnetization dynamics, the Gilbert damping α is often taken as a parameter. We report on a theoretical investigation of α, taking into account crystal symmetries, spin–orbit coupling and thermal reservoirs. The tensor is calculated within the Kamberský breathing Fermi-surface model. The computations are performed within a tight-binding electronic structure approach for the bulk and semi-infinite systems. Slater–Koster parameters are obtained by fitting the electronic structure to first-principles results obtained within the multiple-scattering theory. We address the damping tensor for the bulk and surfaces of the transition metals Fe and Co. The role of various contributions are investigated: intra- and interband transitions, electron and magnetic temperature as well as surface orientation. Our results reveal a complicated non-local, anisotropic damping that depends on all three thermal reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.