Abstract

The giant protein titin forms a unique filament network in cardiomyocytes, which engages in both mechanical and signaling functions of the heart. TTN, which encodes titin, is also a major human disease gene. In this review, we cover the roles of cardiac titin in normal and failing hearts, with a special emphasis on the contribution of titin to diastolic stiffness. We provide an update on disease-associated titin mutations in cardiac and skeletal muscles and summarize what is known about the impact of protein-protein interactions on titin properties and functions. We discuss the importance of titin-isoform shifts and titin phosphorylation, as well as titin modifications related to oxidative stress, in adjusting the diastolic stiffness of the healthy and the failing heart. Along the way we distinguish among titin alterations in systolic and in diastolic heart failure and ponder the evidence for titin stiffness as a potential target for pharmacological intervention in heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.