Abstract
Imaging techniques based on single-pixel detection, such as ghost imaging, can reconstruct or recognize a target scene from multiple measurements using a sequence of random mask patterns. However, the processing speed is limited by the low rate of the pattern generation. In this study, we propose an ultrafast method for random speckle pattern generation, which has the potential to overcome the limited processing speed. The proposed approach is based on multimode fiber speckles induced by fast optical phase modulation. We experimentally demonstrate dynamic speckle projection with phase modulation at 10 GHz rates, which is five to six orders of magnitude higher than conventional modulation approaches using spatial light modulators. Moreover, we combine the proposed generation approach with a wavelength-division multiplexing technique and apply it for image classification. As a proof-of-concept demonstration, we show that 28×28-pixel images of digits acquired at GHz rates can be accurately classified using a simple neural network. The proposed approach opens a novel pathway for an all-optical image processor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.