Abstract

BackgroundIn the scientific biodiversity community, it is increasingly perceived the need to build a bridge between molecular and traditional biodiversity studies. We believe that the information technology could have a preeminent role in integrating the information generated by these studies with the large amount of molecular data we can find in bioinformatics public databases. This work is primarily aimed at building a bioinformatic infrastructure for the integration of public and private biodiversity data through the development of GIDL, an Intelligent Data Loader coupled with the Molecular Biodiversity Database. The system presented here organizes in an ontological way and locally stores the sequence and annotation data contained in the GenBank primary database.MethodsThe GIDL architecture consists of a relational database and of an intelligent data loader software. The relational database schema is designed to manage biodiversity information (Molecular Biodiversity Database) and it is organized in four areas: MolecularData, Experiment, Collection and Taxonomy. The MolecularData area is inspired to an established standard in Generic Model Organism Databases, the Chado relational schema. The peculiarity of Chado, and also its strength, is the adoption of an ontological schema which makes use of the Sequence Ontology.The Intelligent Data Loader (IDL) component of GIDL is an Extract, Transform and Load software able to parse data, to discover hidden information in the GenBank entries and to populate the Molecular Biodiversity Database. The IDL is composed by three main modules: the Parser, able to parse GenBank flat files; the Reasoner, which automatically builds CLIPS facts mapping the biological knowledge expressed by the Sequence Ontology; the DBFiller, which translates the CLIPS facts into ordered SQL statements used to populate the database. In GIDL Semantic Web technologies have been adopted due to their advantages in data representation, integration and processing.Results and conclusionsEntries coming from Virus (814,122), Plant (1,365,360) and Invertebrate (959,065) divisions of GenBank rel.180 have been loaded in the Molecular Biodiversity Database by GIDL. Our system, combining the Sequence Ontology and the Chado schema, allows a more powerful query expressiveness compared with the most commonly used sequence retrieval systems like Entrez or SRS.

Highlights

  • In the scientific biodiversity community, it is increasingly perceived the need to build a bridge between molecular and traditional biodiversity studies

  • Several informatics efforts have been made to integrate molecular data stored in the National Center for Biotechnology Information (NCBI) [5] with other molecular public databases, or with public biodiversity data resources, as in the case of Global Biodiversity Information Facility (GBIF) [6], where the primary biodiversity data are correlated to the metadata and other information

  • We used GIDL to support a set of bioinformatics applications developed in the Molecular Biodiversity Laboratory (MBLab) [15]

Read more

Summary

Introduction

In the scientific biodiversity community, it is increasingly perceived the need to build a bridge between molecular and traditional biodiversity studies. We believe that the information technology could have a preeminent role in integrating the information generated by these studies with the large amount of molecular data we can find in bioinformatics public databases. This work is primarily aimed at building a bioinformatic infrastructure for the integration of public and private biodiversity data through the development of GIDL, an Intelligent Data Loader coupled with the Molecular Biodiversity Database. New challenges arise in biology and the need for transforming large volumes of raw data into usable knowledge about our world and its inhabitants emerges. This transformation poses significant challenges that necessitate the assistance of automated methods. Several informatics efforts have been made to integrate molecular data stored in the National Center for Biotechnology Information (NCBI) [5] with other molecular public databases, or with public biodiversity data resources, as in the case of Global Biodiversity Information Facility (GBIF) [6], where the primary biodiversity data are correlated to the metadata and other information

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.