Abstract
This paper discusses the convergence of the Gibbs sampling algorithm when it is applied to the problem of outlier detection in regression models. Given any vector of initial conditions, theoretically, the algorithm converges to the true posterior distribution. However, the speed of convergence may slow down in a high dimensional parameter space where the parameters are highly correlated. We show that the effect of the leverage in regression models makes very difficult the convergence of the Gibbs sampling algorithm in sets of data with strong masking. The problem is illustrated in several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.