Abstract

Abstract We present a work in progress aimed at extracting translation pairs of source and target dependency treelets to be used in a dependency-based machine translation system. We introduce a novel unsupervised method for parallel tree segmentation based on Gibbs sampling. Using the data from a Czech-English parallel treebank, we show that the procedure converges to a dictionary containing reasonably sized treelets; in some cases, the segmentation seems to have interesting linguistic interpretations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.