Abstract

Hybrid frameworks combining region-based and boundary-based segmentation methods have been used in 3D medical image segmentation applications. In this paper we propose a hybrid 3D segmentation framework which combines Gibbs models, marching cubes and deformable models. We use Gibbs models to create 3D binary masks of the object. Then we use the marching cubes method to initialize a deformable model based on the mask. The deformable model will fit to the object surface driven by the gradient information in the original image. The deformation result will then be used to update the parameters of Gibbs models. These methods will work recursively to achieve a final segmentation. By using the marching cubes method, we succeed in improving the accurancy and efficiency of 3D segmentation. We validate our method by comparing the segmentation result with expert manual segmentation, the results show that high quality segmentation can be achieved with computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.