Abstract

We define a kind of spectral series to filter off completely the Gibbs phenomenon without overshooting and distortional approximation near a point of discontinuity. The construction of this series is based on the method of adding the Fourier coefficients of a Heaviside function to the given Fourier partial sums. More precisely, we prove the uniform convergence of the proposed series on the class of piecewise smooth functions. Also, we attach two numerical examples which illustrate the uniform convergence of the suggested series in comparison with the Fourier partial sums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.