Abstract
We study the one-dimensional periodic derivative nonlinear Schrodinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion \({\textstyle \int }h_k\), \(k\in {\mathbb {Z}}_{+}\). In each \({\textstyle \int }h_{2k}\) the term with the highest regularity involves the Sobolev norm \(\dot{H}^{k}({\mathbb {T}})\) of the solution of the DNLS equation. We show that a functional measure on \(L^2({\mathbb {T}})\), absolutely continuous w.r.t. the Gaussian measure with covariance \(({\mathbb {I}}+(-\varDelta )^{k})^{-1}\), is associated to each integral of motion \({\textstyle \int }h_{2k}\), \(k\ge 1\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.