Abstract

This paper proposes Gibbs free-energy-based objective functions in the parameter fitting of activity coefficient and specific heat capacity of ions. The activity coefficient parameters are fitted through the averaged squared error between the Gibbs free energy calculated by using the measured activity coefficient data and that by using the model equation. The standard-state heat capacity parameters of ions are fitted through the minimization of the average squared error between the Gibbs free energy of dissolution calculated through the saturation activity over a temperature range and that calculated through the standard-state chemical potential as a function of temperature via standard-state specific heat. This methodology is tested with Bromley and Pitzer models. The proposed methodology reduces the need for experiments and avoids the uncertainty of extrapolation to infinite dilution when determining standard-state specific heat of ions. The proposed methodology provides solubility estimates that are mo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.