Abstract
An algorithm is described for the calculation of equilibrium compositions of multiple highly nonideal liquid and solid solutions, as well as pure stoichiometric phases, coexisting with a mixture of ideal gas species at fixed temperature and pressure. The total Gibbs free energy of the system is approximated as a quadratic function of the compositions of the gas phase and stable condensed phases, in an orthogonal basis set of pure elements. Only changes in thermal energy and energy related to pressure-volume work are considered. The total Gibbs energy is minimized directly by use of both the slope and the curvature of the Gibbs energy surface with respect to the gas and condensed phase compositions in the basis elements. The algorithm described has been implemented in a computer code for the calculation of condensation sequences for cosmic nebular gases enriched in dust. Machine, compiler and library requirements for performing these calculations in the C programming language are compared. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 247–256, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.