Abstract
Abscisic acid (ABA) is required for the regulation of seed maturation in maize (Zea mays L.). Mutants blocked in ABA synthesis (such as viviparous-5) do not mature to quiescent, desiccation-tolerant seeds, but germinate on the ear midway through kernel development. Because gibberellins (GA) and ABA act antagonistically in many aspects of plant development, we hypothesized that ABA antagonizes a positive GA signal for precocious germination in maize. In these experiments, we show that a GA deficiency early in seed development, induced genetically or via biosynthesis inhibitors, suppresses vivipary in ABA-deficient developing kernels. The resulting seeds have both desiccation tolerance and storage longevity. Temporal analysis of GA accumulation in wild-type kernels revealed the accumulation of bioactive GA(1) and GA(3) prior to the peak in ABA content. We speculate that these GAs stimulate a developmental program leading to vivipary in the absence of normal amounts of ABA, and that a reduction of GA content re-establishes an ABA/GA ratio appropriate for suppression of germination and induction of maturation. In contrast, the induction of a GA deficiency did not suppress vivipary in viviparous-1 mutant kernels, suggesting that VP1 acts downstream of both GA and ABA in programming seed development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.