Abstract

Endogenous gibberellins (GAs) were extracted from safflower (Carthamus tinctorius L.) stems and detected by capillary gas chromatography-mass spectrometry from which GA1, GA3, GA19,, GA20, GA29, and probably, GA44 were detected. The detection of these GAs suggests that the early 13-OH biosynthetic pathway is prevalent in safflower shoots. Deuterated GAs were used as internal standards and GA concentrations were determined in stems harvested at weekly intervals. GA1 and GA19 levels per stem increased but concentrations per gram dry weight decreased over time. GA20 was only detected in young stem tissue. Gibberellic acid (GA3) was also applied in field trials and both GA3 and the GA biosynthetic inhibitor, paclobutrazol, were applied in growth chamber tests. GA3 increased epidermal cell size, internode length, and increased internode cell number causing stem elongation. Conversely, paclobutrazol reduced stem height, internode and cell size, cell number and overall shoot weight. In field tests, GA3 increased total stem weight, but decreased leaf weight, flower bud number and seed yield. Thus, GA3 promoted vegetative growth at the expense of reproductive commitment. These studies collectively indicate a promotory role of GAs in the control of shoot growth in safflower, and are generally consistent with gibberellin studies of related crop plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call