Abstract

Bioactive gibberellins (GAs) comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

Highlights

  • Cotton is the leading natural fiber for textile industry worldwide

  • Jiang and coworkers showed that over-expressing a cotton sucrose synthase gene, GhsusA1, enhanced thickening of secondary cell wall and fiber qualities, suggesting an important role of sucrose synthase in controlling carbon partitioning to cellulose biosynthesis in cotton fibers [6]

  • Sucrose synthase expression in response to elevated GA levels in fibers and hypocotyls To reveal the possible mechanism for GAs to control secondary cell wall deposition, we investigated transcript levels of six genes related to secondary cell wall biosynthesis, including GhCesA1, GhCesA2, GhRac13, GhSusA1, GhADF1 and GhCTL1 [6,7,35], in 20dpa fibers

Read more

Summary

Introduction

Cotton is the leading natural fiber for textile industry worldwide. Biologically, cotton fibers are extremely elongated single-celled trichomes originating from outermost layer of ovule epidermis [1,2,3,4]. The development of cotton fiber may be divided into 4 stages, i.e. initiation, elongation, secondary cell wall deposition and maturation. Secondary cell wall deposition starts at around 14–17 days post anthesis (dpa) and lasts for over 30d [1,3,5]. Cotton fiber consists primarily of secondary cell wall and over 90% dry weight of fiber may exist as cellulose. Jiang and coworkers showed that over-expressing a cotton sucrose synthase gene, GhsusA1, enhanced thickening of secondary cell wall and fiber qualities, suggesting an important role of sucrose synthase in controlling carbon partitioning to cellulose biosynthesis in cotton fibers [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call