Abstract

Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the plant. Arabidopsis genes encoding most GA biosynthesis and catabolism enzymes, as well as GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components have been identified. Expression studies on the GA biosynthesis genes are beginning to reveal the potential sites of GA biosynthesis during plant development. Biochemical and genetic analyses demonstrate that GA de-represses its signaling pathway by binding to GID1s, which induce degradation of GA signaling repressors (DELLAs) via an ubiquitin-proteasome pathway. To modulate plant growth and development, the GA pathway is also regulated by endogenous signals (other hormones) and environmental cues (such as light, temperature and salt stress). In many cases, these internal and external cues directly affect GA metabolism and bioactive GA levels, and indirectly alter DELLA accumulation and GA responses. Importantly, direct negative interaction between DELLA and PIF3 and PIF4 (2 phytochrome interacting transcription factors) appears to integrate the effects of light and GA on hypocotyl elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.