Abstract
The cosmopolitan alga Phaeocystis globosa forms large blooms in shallow coastal waters off the Viet Nam coast, which impacts the local aquaculture and fishing industries substantially. The unusual feature of this alga is that it forms giant colonies that can reach up to 3cm in diameter. We conducted experiments designed to elucidate the ecophysiological characteristics that presumably favor the development of giant colonies. Satellite images of chlorophyll fluorescence showed that the coastal bloom was initiated in summer and temporally coincident with the onset of monsoonally driven upwelling. While determining the spatial distribution of Phaeocystis was not feasible, we sampled it in the near-shore region. A positive relationship was found between colony size and colonial cell densities, in contrast to results from the North Sea. Mean chlorophyll a concentration per cell was 0.45pgcell−1, lower than in laboratory or temperate systems. The contribution of mucous carbon ranged from 63–95% of the total carbon; furthermore, mucous carbon per unit of colony surface area appeared to decrease with colony size, suggesting that the mucoid sheath became thinner as colonies grew larger. Sinking rates averaged 189md−1, strongly suggesting that giant colonies could only persist in shallow, turbulent environments. No relationship between colony size and sinking rates was observed. DOC concentrations of intracolonial fluid averaged 5940μM, 25 times greater than ambient concentrations. Estimated diffusion coefficients of ions across the mucous envelope were ca. 1.0±0.3×10−7cm2s−1 for colonies with diameters of ca. 1.0cm. In total, the characteristics of the giant colonies suggest that the Vietnamese strain is substantially different from that found in temperate environments, and that it has a number of unusual features that influence its growth and development in coastal Vietnamese waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Deep Sea Research Part II: Topical Studies in Oceanography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.