Abstract

The quantization of magnetic flux in superconductors is usually seen as vortices penetrating the sample. While vortices are unstable in bulk type I superconductors, restricting the superconductor causes a variety of vortex structures to appear. We present a systematic study of giant vortex states in type I superconductors obtained by numerically solving the Ginzburg–Landau equations. The size of the vortices is seen to increase with decreasing film thickness. In type I superconductors, giant vortices appear at intermediate thicknesses but they do not form a well-defined vortex lattice. In the thinnest type I films, singly quantized vortices seem to be stabilized by the geometry of the sample instead of an increase in the effective Ginzburg–Landau parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.