Abstract

While living systems have developed highly efficient ways to convert chemical energy (e.g., ATP hydrolysis) to mechanical motion (e.g., movement of muscle), it remains a challenge to build muscle-like biomimetic systems to generate mechanical force directly from chemical reactions. Here we show that a continuous flow of reactant solution leads to by far the largest volume change to date in autonomous active gels driven by the Belousov-Zhabotinsky reaction. These results demonstrate that microfluidics offers a useful and facile experimental approach to optimize the conditions (e.g., fabrication methods, counterions, flow rates, concentrations of reagents) for chemomechanical transduction in active materials. This work thus provides much needed insights and methods for the development of chemomechanically active systems based on combining soft materials and microfluidic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.