Abstract

AbstractStrong two‐photon absorption (TPA) in monolayer MoS2 is demonstrated in contrast to saturable absorption (SA) in multilayer MoS2 under the excitation of femtosecond laser pulses in the near‐infrared region. MoS2 in the forms of monolayer single crystal and multilayer triangular islands are grown on either quartz or SiO2/Si by employing the seeding method through chemical vapor deposition. The nonlinear transmission measurements reveal that monolayer MoS2 possesses a nonsaturation TPA coefficient as high as ∼(7.62 ±0.15) ×103 cm/GW, larger than that of conventional semiconductors by a factor of 103. As a result of TPA, two‐photon pumped frequency upconverted luminescence is observed directly in the monolayer MoS2. For the multilayer MoS2, the SA response is demonstrated with the ratio of the excited‐state absorption cross section to ground‐state cross section of ∼0.18. In addition, the laser damage threshold of the monolayer MoS2 is ∼97 GW/cm2, larger than that of the multilayer MoS2 of ∼78 GW/cm2. image

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call