Abstract
Here we demonstrate that giant transverse optical forces can be generated in nanoscale slot waveguides of hyperbolic metamaterials, with more than two orders of magnitude stronger compared to the force created in conventional silicon slot waveguides, due to the nanoscale optical field enhancement and the extreme optical energy compression within the air slot region. Both numerical simulation and analytical treatment are carried out to study the dependence of the optical forces on the waveguide geometries and the metamaterial permittivity tensors, including the attractive optical forces for the symmetric modes and the repulsive optical forces for the anti-symmetric modes. The significantly enhanced transverse optical forces result from the strong optical mode coupling strength between two metamaterial waveguides, which can be explained with an explicit relation derived from the coupled mode theory. Moreover, the calculation on realistic metal-dielectric multilayer structures indicates that the predicted giant optical forces are achievable in experiments, which will open the door for various optomechanical applications in nanoscale, such as optical nanoelectromechanical systems, optical sensors and actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.