Abstract
AbstractLattice deformation via substrate‐driven mechanical straining of 2D materials can profoundly modulate their bandgap by altering the electronic band structure. However, such bandgap modulation is typically short‐lived and weak due to substrate slippage, which restores lattice symmetry and limits strain transfer. Here, it is shown that a non‐volatile thermomechanical strain induced during hot‐press synthesis results in giant modulation of the inherent bandgap in quasi‐2D tellurium nanoflakes (TeNFs). By leveraging the thermal expansion coefficient (TEC) mismatch and maintaining a pressure‐enforced non‐slip condition between TeNFs and the substrate, a non‐volatile and anisotropic compressive strain is attained with ε = −4.01% along zigzag lattice orientation and average biaxial strain of −3.46%. This results in a massive permanent bandgap modulation of 2.3 eV at a rate S (ΔEg) of up to 815 meV/% (TeNF/ITO), exceeding the highest reported values by 200%. Furthermore, TeNFs display long‐term strain retention and exhibit robust band‐to‐band blue photoemission featuring an intrinsic quantum efficiency of 80%. The results show that non‐volatile thermomechanical straining is an efficient substrate‐based bandgap modulation technique scalable to other 2D semiconductors and van der Waals materials for on‐demand nano‐optoelectronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.