Abstract

Nanofluidic systems could in principle be used to produce electricity from waste heat, but current theoretical descriptions predict a rather poor performance as compared to thermoelectric solid materials. Here we investigate the thermoelectric response of NaCl and NaI solutions confined between charged walls, using molecular dynamics simulations. We compute a giant thermoelectric response, 2 orders of magnitude larger than the predictions of standard models. We show that water excess enthalpy-neglected in the standard picture-plays a dominant role in combination with the electro-osmotic mobility of the liquid-solid interface. Accordingly, the thermoelectric response can be boosted using surfaces with large hydrodynamic slip. Overall, the heat harvesting performance of the model systems considered here is comparable to that of the best thermoelectric materials, and the fundamental insight provided by molecular dynamics suggests guidelines to further optimize the performance, opening the way to recycle waste heat using nanofluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.