Abstract
Chiral hybrid organic-inorganic perovskites (chiral HOIPs) present potential spintronic and spin-optoelectronic applications due to their unique spin-related properties. However, the spin physics in chiral HOIPs has rarely been explored by theoretical studies. Here, with first-principles calculations, we investigate the spin characteristics of the Pb-I based chiral HOIPs and propose an effective approach to significantly increase the spin splitting with a halogen-substituted chiral molecule. Compared to the value of 13 meV without halogen substitution, the spin splitting energy can be significantly enhanced to 73, 90, and 105 meV with F, Cl, and Br substitution, respectively. A k·p model Hamiltonian based on a symmetry argument reveals that the halogen substitution enhances the local electric field, inducing distortion of the PbI6 octahedron. Further calculation demonstrates that halogen substitution can strongly modify the electrostatic potential surface of the chiral molecules. This work presents an effective molecular engineering approach to modulate spin splitting of chiral HOIPs, shedding light on the design of spintronic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.