Abstract

Through first-principles real-time density-matrix (FPDM) dynamics simulations, we investigated spin relaxation due to electron-phonon and electron-impurity scatterings with spin-orbit coupling (SOC) in two-dimensional Dirac materials silicene and germanene at finite temperatures. We discussed the applicability of conventional descriptions of spin relaxation mechanisms by Elliott-Yafet (EY) and D'yakonov-Perel' (DP) compared to the FPDM method, which is determined by a complex interplay of intrinsic SOC, external fields, and scattering strength. For example, the electric field dependence of the spin lifetime by FPDM is close to the DP mechanism for silicene at room temperature but similar to the EY mechanism for germanene. Because of its stronger SOC strength and buckled structure in contrast to graphene, germanene has a giant spin lifetime anisotropy and spin-valley locking effect under nonzero Ez and low temperatures. More importantly, germanene has a long spin lifetime (∼100 ns at 50 K) and an ultrahigh carrier mobility, making it advantageous for spin-valleytronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.