Abstract

We present a combined experimental and theoretical study on copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S=1/2 antiferromagnet with alternating local symmetry. From the local susceptibility measured by NMR at the three inequivalent carbon sites in the pyrimidine molecule we deduce a giant spin canting, i.e., an additional staggered magnetization perpendicular to the applied external field at low temperatures. The magnitude of the transverse magnetization, the spin canting of (52+/-4) degrees at 10 K and 9.3 T, and its temperature dependence are in excellent agreement with exact diagonalization calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call