Abstract

A magnetostrictive ferromagnet–polymer composite consisting of steel wires suspended in a polymer matrix has been developed that exhibits large reversible magnetostrictive strain in relatively low magnetic fields. The strain for a fixed field is a nonmonotonic function of wire loading for the longer wires investigated, and the strain for a given wire loading increases with decreasing the wire length. Within the limits of this study, a maximum saturation strain of 60.2% in a 7.5 kOe field was observed with a wire length of 0.50 cm and a wire volume fraction of approximately 0.2. No degradation in strain was observed over the maximum number of 50 expansion cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.