Abstract
The spectrum of gamma-radiation emitted by a highly excited nucleus can be calculated in two ways. In the first method the transition probability for gamma emission is related to the photon absorption cross-section by detailed balance. The second method relies on the fact that an excited hot nucleus has thermal fluctuations. In particular it has a fluctuating dipole moment which produces thermal radiation. The two methods are closely related and in both cases the spectrum of the radiation emitted is dominated by the giant dipole resonance. The equivalence of the detailed balance and thermal radiation theories can be demonstrated explicitly for a coupled oscillator model of the giant resonance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.