Abstract

Recent improvements in the experimental determination of properties of the Isovector Giant Quadrupole Resonance (IVGQR), as demonstrated in the A=208 mass region, may be instrumental for characterizing the isovector channel of the effective nuclear interaction. We analyze properties of the IVGQR in 208Pb, using both macroscopic and microscopic approaches. The microscopic method is based on families of non-relativistic and covariant Energy Density Functionals (EDF), characterized by a systematic variation of isoscalar and isovector properties of the corresponding nuclear matter equations of state. The macroscopic approach yields an explicit dependence of the nuclear symmetry energy at some subsaturation density, for instance S(\rho=0.1 fm^{-3}), or the neutron skin thickness \Delta r_{np} of a heavy nucleus, on the excitation energies of isoscalar and isovector GQRs. Using available data it is found that S(\rho=0.1 fm{}^{-3})=23.3 +/- 0.6 MeV. Results obtained with the microscopic framework confirm the correlation of the \Delta r_{np} to the isoscalar and isovector GQR energies, as predicted by the macroscopic model. By exploiting this correlation together with the experimental values for the isoscalar and isovector GQR energies, we estimate \Delta r_{np} = 0.14 +/- 0.03 fm for 208Pb, and the slope parameter of the symmetry energy: L = 37 +/- 18 MeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.