Abstract

van der Waals (vdW) heterostructures formed by two-dimensional (2D) magnets and semiconductors have provided a fertile ground for fundamental science and spintronics. We present first-principles calculations finding a proximity exchange splitting of 14 meV (equivalent to an effective Zeeman field of 120 T) in the vdW magnet-semiconductor heterostructure MoS2/CrBr3, leading to a 2D spin-polarized half-metal with carrier densities ranging up to 1013 cm-2. We consequently explore the effect of large exchange coupling on the electronic band structure when the magnetic layer hosts chiral spin textures such as skyrmions. A flat Chern band is found at a "magic" value of magnetization [Formula: see text] for Schrödinger electrons, and it generally occurs for Dirac electrons. The magnetic proximity-induced anomalous Hall effect enables transport-based detection of chiral spin textures, and flat Chern bands provide an avenue for engineering various strongly correlated states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.