Abstract

High-performance piezoelectric materials are critical components for electromechanical sensors and actuators. For more than 60 years, the main strategy for obtaining large piezoelectric response has been to construct multiphase boundaries, where nanoscale domains with local structural and polar heterogeneity are formed, by tuning complex chemical compositions. We used a different strategy to emulate such local heterogeneity by forming nanopillar regions in perovskite oxide thin films. We obtained a giant effective piezoelectric coefficient [Formula: see text] of ~1098 picometers per volt with a high Curie temperature of ~450°C. Our lead-free composition of sodium-deficient sodium niobate contains only three elements (Na, Nb, and O). The formation of local heterogeneity with nanopillars in the perovskite structure could be the basis for a general approach to designing and optimizing various functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.