Abstract
Scanning tunnelling spectra of a graphene field-effect transistor reveal an unexpected tenfold increase in conductance as a result of phonon-mediated inelastic tunnelling. The honeycomb lattice of graphene is a unique two-dimensional system where the quantum mechanics of electrons is equivalent to that of relativistic Dirac fermions1,2. Novel nanometre-scale behaviour in this material, including electronic scattering3,4, spin-based phenomena5 and collective excitations6, is predicted to be sensitive to charge-carrier density. To probe local, carrier-density-dependent properties in graphene, we have carried out atomically resolved scanning tunnelling spectroscopy measurements on mechanically cleaved graphene flake devices equipped with tunable back-gate electrodes. We observe an unexpected gap-like feature in the graphene tunnelling spectrum that remains pinned to the Fermi level (EF) regardless of graphene electron density. This gap is found to arise from a suppression of electronic tunnelling to graphene states near EF and a simultaneous giant enhancement of electronic tunnelling at higher energies due to a phonon-mediated inelastic channel. Phonons thus act as a ‘floodgate’ that controls the flow of tunnelling electrons in graphene. This work reveals important new tunnelling processes in gate-tunable graphitic layers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.