Abstract
A giant persistent photoconductivity (PPC) phenomenon has been observed in vacuum condition based on a single WO3 nanowire and presents some interesting results in the experiments. With the decay time lasting for 1 × 104 s, no obvious current change can be found in vacuum, and a decreasing current can be only observed in air condition. When the WO3 nanowires were coated with 200 nm SiO2 layer, the photoresponse almost disappeared. And the high bias and high electric field effect could not reduce the current in vacuum condition. These results show that the photoconductivity of WO3 nanowires is mainly related to the oxygen adsorption and desorption, and the semiconductor photoconductivity properties are very weak. The giant PPC effect in vacuum condition was caused by the absence of oxygen molecular. And the thermal effect combining with oxygen re-adsorption can reduce the intensity of PPC.
Highlights
One-dimensional (1D) nanotubes, nanowires, or nanorods have shown much higher sensitivity than bulk materials at room temperature because of their higher surface-to-volume ratio and stronger dependence of electrical conductance on the amount of adsorbates [1,2,3,4,5]
In order to observe the persistent photoconductivity of the WO3 nanowire in vacuum condition, we designed a vacuum chamber with a quartz glass window, which allows the UV illumination reach to the devices
To analyze the semiconductor properties of WO3 nanowire for the photoconductivity, a 200-nm SiO2 layer was deposited on devices using PECVD at 200°C to isolate the effects of oxygen absorption and surface defects
Summary
One-dimensional (1D) nanotubes, nanowires, or nanorods have shown much higher sensitivity than bulk materials at room temperature because of their higher surface-to-volume ratio and stronger dependence of electrical conductance on the amount of adsorbates [1,2,3,4,5]. The thermal and electric field effects cannot accelerate the decay current in vacuum condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.