Abstract

The nonlinear optical properties of one-dimensional all-solid-state photonic-crystal microcavities (MCs) are experimentally studied by second-harmonic generation (SHG) spectroscopy in both the frequency and the wave-vector domains. The studied single and coupled MCs are formed by the alternating of mesoporous silicon layers of different porosities. When the fundamental radiation is in resonance with the MC mode the second-harmonic intensity is enhanced by a factor of approximately 102. The resonant SHG response is compared with the off-resonance response, as the fundamental wavelength is outside the photonic bandgap. The splitting of the modes of two identical coupled MCs is observed in the wave-vector domain spectrum of enhanced SHG. The SHG enhancement is attributed to the combined effects of the spatial localization of the fundamental field in the MC spacer and the fulfillment of the phase-matching conditions. The confinement of the resonant fundamental field is probed directly at the MC cleavage by a scanning near-field optical microscope. The role of the phase matching that is associated with the giant effective dispersion in the spectral vicinity of the MC mode is deduced from a comparison with the SHG peaks at both edges of the photonic bandgap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.