Abstract
Rare-earth optical materials with large optical gain are of great importance for a wide variety of applications in photonics and quantum information due to their long carrier lifetimes and quantum coherence times, especially in the realization of efficient lasers and amplifiers. Until now, such materials have achieved a gain of less than a few dB cm–1, rendering them unsuitable for applications in nanophotonic integrated circuits. Here, we report the results of the signal enhancement and transmission experiments on a single-crystal erbium chloride silicate nanowire. Our experiments demonstrate that a net material gain over 100 dB cm–1 at wavelengths around 1,530 nm is possible due to the nanowire's single-crystalline material quality and its high erbium concentration. Our results establish that such rare-earth-compound nanowires are a potentially important class of nanomaterials for a variety of applications including, for example, subwavelength-scale optical amplifiers and lasers for integrated nanophotonics, and quantum information. Erbium chloride silicate nanowire promises optical gain for nanophotonic circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.