Abstract

Optical activity is an effect of prominent importance in stereochemistry, analytical chemistry, metamaterials, spin photonics, and astrobiology, but is naturally minuscule. Metallic nanostructures are commonly exploited as basic elements for artificially producing large optical activity by virtue of surface plasmon resonance (SPR) on the nanostructures. However, their intrinsic high ohmic loss amplified by the SPR results in low energy efficiency and large photothermal heat generation, severely limiting their performance and practical utility. Giant optical activity by inducing magnetic resonance in an all-dielectric spiral nanoflower (spiral-flower-shaped nanostructure) is demonstrated here. Specifically, a large circular-intensity difference of ≈35% is theoretically predicted and experimentally demonstrated by optimizing the magnetic quadrupole contribution of the nanoflower to scattered light. The nanoflower overcomes the bottleneck of the traditional metallic platforms and enables the development of diverse chiroptical devices and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.