Abstract

We have investigated the nonlinear low-frequency microwave absorption of an ensemble of small metallic grains. Earlier Zhou et al. [Phys. Rev. Lett. 77, 1958 (1996)] have proved that linear absorption by such a system is due to a mesoscopic relaxation mechanism for which important contribution is from the grains with small level spacings between the ground state and the first excited state. Here we have shown further that such grains are anomalously sensitive to the field amplitude and the distribution of level spacings. Since such a behavior depends on external magnetic field, we expect the appearance of a giant nonlinear magnetoresistance, as well as a very strong temperature dependence of the nonlinear microwave conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.