Abstract

We present high spatial resolution observations of Giant Molecular Clouds (GMCs) in the eastern part of the nearby spiral galaxy NGC 6946 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have observed 12CO(1-0), 12CO(2-1) and 13CO(1-0), achieving spatial resolutions of 5.4" x 5.0", 2.5" x 2.0" and 5.6" x 5.4" respectively over a region of 6 x 6 kpc. This region extends from 1.5 kpc to 8 kpc galactocentric radius, thus avoiding the intense star formation in the central kpc. We have recovered short-spacing u-v components by using single dish observations from the Nobeyama 45m and IRAM 30m telescopes. Using the automated CPROPS algorithm we identified 44 CO cloud complexes in the 12CO(1-0) map and 64 GMCs in the 12CO(2-1) maps. The sizes, line widths, and luminosities of the GMCs are similar to values found in other extragalactic studies. We have classified the clouds into on-arm and inter-arm clouds based on the stellar mass density traced by the 3.6 um map. On-arm clouds present in general higher star formation rates than clouds located on inter-arm regions. Although the star formation efficiency shows no systematic trend with galactocentric radius, some on-arm clouds -- which are more luminous and more massive compared to inter-arm GMCs -- are also forming stars more efficiently than the rest of the identified GMCs. These structures appear to be located on two specific regions in the spiral arms. One of them shows a strong gradient, suggesting that this region of high star formation efficiency may be the result of gas flow convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.