Abstract

In the present work, we accurately calculate the absorption spectrum of liquid ammonia up to 13 eV using many-body perturbation approach. The electronic bandgap of liquid NH3 is perfectly described as the combination of density functional theory, Coulomb-hole screened exchange, and G0W0 approximation to the electronic self-energy, yielding a direct gap (Γ → Γ) of 7.71 eV, fully consistent with the experimentally measured gap from photo-emission spectroscopy. With respect to the NH3 optical properties, the entire spectrum in particular the low lying first absorption band is extremely affected by electron-hole interactions, leading to a fundamental redistribution of spectral weights of the independent-particle spectrum. Three well separated but broad main peaks are identified at 7.0, 9.8, and 11.8 eV with steadily increasing intensities in excellent agreement with the experimental data. Furthermore, we observe a giant net blue-shift of the first absorption peak of about 1.4 eV from gaseous to liquid phase as the direct consequence of many-body effects, allowing the associated liquid ammonia absorption band exciton to delocalize and feel more effectively the repulsion effects imposed by the surrounding solvent shells. Further, the spectrum is insensitive to the coupling of resonant and anti-resonant contributions. Concerning electronic response structure of liquid NH3, it is most sensitive to excitations at energies lower than its electronic gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call