Abstract

The giant magnetoresistance (GMR) effect was studied on electrodeposited Co-Cu/Cu multilayers of 300 bilayer repeats which were produced in an electrochemical cell with homogeneous current distribution from a bath with two solutes The preparation employed the conventional potentiostatic/potentiostatic and galvanostatic/galvanostatic, as well as an unprecedented galvanostatic/potentiostatic (G/P) control. We find that the specific deposition parameters rather than the deposition mode itself are decisive for the magnitude of the GMR which could be as high as 10% measured at 1 kOe on substrate-free multilayers in optimized G/P conditions. For this new deposition mode, detailed studies on the dependence of GMR on Co and Cu layer thicknesses as well as the bath pH were performed. No oscillatory behavior of the GMR as a function of the Cu layer thickness could be observed. The results suggest the importance of a Co-dissolution and/or a Co vs. Cu exchange reaction after completing the deposition of each magnetic layer. These reactions lead to the formation of a Cu or Cu-rich interface layer prior to the electrochemical deposition of the actual Cu layer during the subsequent pulse in either deposition mode. It turned out that the properties of this interfacial layer (thickness, degree of chemical intermixing) strongly influence the resulting GMR behavior of the multilayer. © 2003 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.