Abstract

The giant magneto-impedance effect (GMI) consists of the large relative change of the impedance (up to around 300%) observed in magnetically very soft ribbon and wire alloys under the application of dc magnetic fields (units of kA m1). The phenomenology of the GMI effect is firstly described including a discussion about its origin which mainly lies in the classical skin-effect. An alternative approach to GMI phenomena considering equivalent circuits is also introduced. The main requirements to detect GMI is to count on a sample with very large circular susceptibility and reduced resistivity provided the frequency of the ac current flowing along the sample (necessary to evaluate the impedance) is high enough (roughly above 0.1 MHz for most samples here considered). The dependence on dc magnetic field, mechanical stresses and particularly on thermal treatments resulting in the induced magnetic anisotropies or in the devitrification of amorphous samples into a nanocrystalline structure are reviewed. First results on GMI in glass-coated amorphous microwires are also reported. The use of the GMI as a tool for studying the inner circular magnetization process or for evaluating the magnetostriction is introduced. Finally, a description on various aspects regarding the development of magnetic field, current, proximity and stress sensor applications is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.