Abstract

Magnetoelectric (ME) laminates show higher ME coefficients than that of natural multiferroics (e.g. Cr <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> , BiTiO) by up to several orders of magnitude. Recent studies on bulk ME sensors using Fe <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">85</inf> B <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</inf> Si <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</inf> (Metglas) /polyvinylidene fluoride composite show a high ME voltage coefficient of 21V/cm·Oe at 20 Hz [1]. However, bulk sensors suffer from poor epoxy bonding, aging and difficulty of integration with CMOS electronics. Here, we report, for the first time, the monolithic nanofabrication of Pb(Zr <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.52</inf> Ti <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.48</inf> )O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> (PZT)-Fe <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">85</inf> B <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</inf> Si <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</inf> ME cantilevers (Fig.1(a)) on silicon substrate which achieve 0.46 V/cm·Oe at 20 Hz and 1.8 V/cm·Oe at a resonance frequency of 8.4 KHz. Also, ME cantilever based resonant gate transistors (RGT) (Fig.1 (b)) has been designed and analyzed in comparison with ME cantilever. A 10X signal to noise ratio improvement can be reached by ME RGT. This shows the compatibility of the nanofabricated cantilever ME sensors with the Si process technology and paves the way for the future integration of MEMS based ultra-sensitive magnetic sensors with advanced Si nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call