Abstract

BackgroundCompared with traditional biomagnetic field detection devices, such as superconducting quantum interference devices (SQUIDs) and atomic magnetometers, only giant magnetoimpedance(GMI) sensors can be applied for unshielded human brain biomagnetic detection, and they have the potential for application in next-generation wearable equipment for brain-computer interfaces (BCIs).Achieving a better GMI sensor without magnetic shielding requires the stimulation of the GMI effect to be maximized and environmental noise interference to be minimized. Moreover, the GMI effect stimulated in an amorphous filament is closely related to its working point, which is sensitive to both the external magnetic field and the drive current of the filament. MethodsIn this paper, we propose a new noisereducing GMI gradiometer with a dual-loop self-adapting structure. Noise reduction is realized by a direction-flexible differential probe, and the dual-loop structure optimizes and stabilizes the working pointby automatically controlling the external magnetic field and drive current. This dual-loop structure is fully program controlled by a micro control unit (MCU), which not only simplifies the traditional constantparameter sensor circuit, saving the time required to adjust the circuit component parameters, but also improves the sensor performance and environmental adaptation. ResultsIn the performance test, within 2 min of self-adaptation, our sensor showed a better sensitivity and signal-to-noise ratio (SNR) than those of the traditional designs and achieved a background noise of 12 pT/√Hz at 10 Hz and 7pT/√Hz at 200 Hz. ConclusionTo the best of our knowledge, our sensor is the first to realize self-adaptation of both the external magnetic field and the drive current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.