Abstract

Magnetic heterostructures with high spin-orbit torque efficiency and low impedance have great promise for low-power spintronic technologies. We report a symmetry-broken spin-orbit superlattice [Pt0.75Cu0.25/Co/Ta]n, in which the dampinglike spin-orbit torque efficiency accumulates linearly with the repeat number n and achieves a giant value of >200% when n = 16, which is 100 times stronger than that of a conventional magnetic heterostructure with a clean Pt (e.g., 2% at a resistivity of 7 μΩ cm). The giant spin-orbit torque effect arises predominantly from the spin Hall effect of Pt0.75Cu0.25. The anomalous Nernst effect increases remarkably as the repeat number n increases, implying a critical need to include the thermal effect in the analysis of magnetic superlattices and multilayers. The giant spin-orbit torque, low resistivity, and strong anomalous Nernst effect suggest the great potential of the superlattice [Pt0.75Cu0.25/Co/Ta]n for low-power memory and logic technologies as well as high-performance thermoelectric battery and sensor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.