Abstract

The strong optical chirality arising from certain synthetic metamaterials has important and widespread applications in polarization optics, stereochemistry and spintronics. However, these intrinsically chiral metamaterials are restricted to a complicated three-dimensional (3D) geometry, which leads to significant fabrication challenges, particularly at visible wavelengths. Their planar two-dimensional (2D) counterparts are limited by symmetry considerations to operation at oblique angles (extrinsic chirality) and possess significantly weaker chiro-optical responses close to normal incidence. Here, we address the challenge of realizing strong intrinsic chirality from thin, planar dielectric nanostructures. Most notably, we experimentally achieve near-unity circular dichroism with ~90% of the light with the chosen helicity being transmitted at a wavelength of 540 nm. This is the highest value demonstrated to date for any geometry in the visible spectrum. We interpret this result within the charge-current multipole expansion framework and show that the excitation of higher-order multipoles is responsible for the giant circular dichroism. These experimental results enable the realization of high-performance miniaturized chiro-optical components in a scalable manner at optical frequencies.

Highlights

  • An object is said to be chiral if it cannot be superposed with its mirror image via rotation or translation operations alone

  • In the context of optics, chiral objects interact with circularly polarized (CP) light in different ways depending on their handedness; they are said to exhibit optical chirality and are characterized by circular dichroism and circular birefringence

  • We observe that ~ 87% of right circularly polarized (RCP) light is transmitted in the zeroth order, with a difference in transmittance of almost 80% at a wavelength of 540 nm

Read more

Summary

Introduction

An object is said to be chiral if it cannot be superposed with its mirror image via rotation or translation operations alone. This geometric or structural chirality is an intrinsic part of the natural world and manifests itself in numerous forms, ranging from molecules like amino acids[1] to macroscale objects such as quartz crystals[2] and even entire living organisms[3]. In the context of optics, chiral objects interact with circularly polarized (CP) light in different ways depending on their handedness; they are said to exhibit optical chirality and are characterized by circular dichroism and circular birefringence The latter is known as optical activity. Chiro-optical responses in most naturally occurring compounds are very small due to the fundamental mismatch in size scale between molecules and the wavelength of incident light

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.