Abstract

The capability of graphene to generate hot electrons is predicted to be effective in converting low energy photons into electrical currents for the mid-infrared photodetection [1,2]. However, the quantum yield of such hot electrons is not sufficient due to the limited thickness of two-dimensional graphene [3-5]. Therefore, it raises the question whether the electron thermalization is efficient enough to generate a large number of hot electrons in graphitic materials as a detectable photocurrent. Here, an experimental demonstration of the sufficient hot electron generation in Bernal stacking sequence nano-graphite films is presented. A comprehensive layer number dependence (1–120-layers graphene) study verifies the strong hot electron scattering correlations, exhibiting intriguing two-dimensional properties into their bulk counterparts. Consequently, the spectral coverage of hot electrons promoted from mid-infrared (4 μm) to near-infrared (1.2–1.6 μm) energy level is achieved, leading to a 109 eV−1 cm−2 populated hot electron density for the mid-infrared photodetection. In addition, the consistently increased number of photo-excited electrons via stacking of graphene layers, results in a gradual evolution of subsequent electron thermalization. The proposed scheme for exploring the thickness dependence electron thermalization property of the graphitic material paves the way to design ultrafast and sensitive mid-infrared photodetecters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.