Abstract
Half-cycle picosecond pulses have been produced from thin photo-conductors, when applying an electric field across the surface and switching on conduction by a short laser pulse. Then the transverse current in the wafer plane emits half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6 V/m peak electric field have been observed. Here we show that single half-cycle pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a double foil target by intense few-cycle laser pulses. Focused onto an ultra-thin foil, all electrons are blown out, forming a uniform sheet of relativistic electrons. A second layer, placed at some distance behind, reflects the drive beam, but lets electrons pass straight. Under oblique incidence, beam reflection provides the transverse current, which emits intense half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New types of attosecond pump-probe experiments will become possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.