Abstract

Faraday rotation, the rotation of the polarization of light due to a magnetic field in the direction of propagation of the light, is used in applications ranging from quantum memory to the detection of biomagnetic fields. For these applications large Faraday rotation is necessary, but absorption of light is detrimental. In search of these properties, we have characterized the Verdet constant of a so far unexplored class of mesogenic organic molecules. We report their spectra and provide an interpretation. A Verdet constant of almost 2.5 × 105 deg T–1 m–1 is found around 520 nm. This Verdet constant is 3 orders of magnitude larger than the largest known for organic molecules in a region without spectral features. We attribute this enormous Faraday rotation to resonant enhancement by a triplet excitation that does not appear in the linear absorption spectrum and to near-resonant enhancement by low-energy singlet excitations. Furthermore we are able to switch the Faraday rotation by changing the liquid cryst...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.