Abstract
We designed and numerically investigated a mechanism to enhance the polarization rotation when THz radiation passes through an array of multilayered graphene/insulator disks placed in a static magnetic field. The observed giant Faraday rotation is due to plasmonic coupling in the disks leading to the enhanced dipole oscillation strength of plasmonic antibonding states. With additional electromagnetic coupling between the disks in the array, the Faraday rotation angles nearly 30° are achieved in a relatively small external magnetic field of around 1 T. The operation wavelength can be tuned within the THz spectral range by controlling the Fermi level of graphene, number of graphene layers, and disk size and period. The proposed mechanism opens up a way to design the ultrathin magneto-optical nanophotonic devices and polarization rotators with high transmittance in the mid-infrared range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.