Abstract

We demonstrate that stimulated Raman amplification can be enhanced by more than four orders of magnitude in a silicon metasurface consisting of a periodic distribution of specially engineered photonic crystal (PhC) cavities in a silicon PhC slab waveguide. In particular, by designing the PhC cavities so as they possess two optical modes separated by the Raman frequency of silicon, one can achieve large optical field enhancement at both the pump and Stokes frequencies. As a consequence, the effective Raman susceptibility of the nonlinear metasurface, calculated using a novel homogenization technique, is significantly larger than the intrinsic Raman susceptibility of silicon. Implications to technological applications of our theoretical study are discussed, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.