Abstract

A sharp focus of current research on superconducting superhydrides is to raise their critical temperature Tc at moderate pressures. Here, we report a discovery of giant enhancement of Tc in CeH9 obtained via random substitution of half Ce by La, leading to equal-atomic (La,Ce)H9 alloy stabilized by maximum configurational entropy, containing the LaH9 unit that is unstable in pure compound form. The synthesized (La,Ce)H9 alloy exhibits Tc of 148–178 K in the pressure range of 97–172 GPa, representing up to 80% enhancement of Tc compared to pure CeH9 and showcasing the highest Tc at sub-megabar pressure among the known superhydrides. This work demonstrates substitutional alloying as a highly effective enabling tool for substantially enhancing Tc via atypical compositional modulation inside suitably selected host crystal. This optimal substitutional alloying approach opens a promising avenue for synthesis of high-entropy multinary superhydrides that may exhibit further increased Tc at even lower pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call